Solution of the generalized periodic discrete Toda equation II: theta function solution

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2010 J. Phys. A: Math. Theor. 43155208
(http://iopscience.iop.org/1751-8121/43/15/155208)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.157
The article was downloaded on 03/06/2010 at 08:44

Please note that terms and conditions apply.

Solution of the generalized periodic discrete Toda equation II: theta function solution

Shinsuke Iwao
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku, Tokyo 153-8914, Japan
E-mail: iwao@ms.u-tokyo.ac.jp

Received 3 October 2009, in final form 3 March 2010
Published 25 March 2010
Online at stacks.iop.org/JPhysA/43/155208

Abstract

We construct the theta function solution to the initial value problem for the generalized periodic discrete Toda equation.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

The aim of the present paper is to obtain an explicit formula for the solution to the hungry periodic discrete Toda equation (hpdToda) ((1)-(3)): $\forall n, t \in \mathbb{Z}$,

$$
\begin{align*}
& I_{n}^{t+M}=I_{n}^{t}+V_{n}^{t}-V_{n-1}^{t+1}, \tag{1}\\
& V_{n}^{t+1}=\frac{I_{n+1}^{t} V_{n}^{t}}{I_{n}^{t+M}}, \tag{2}\\
& I_{n}^{t}=I_{n+N}^{t}, \quad V_{n}^{t}=V_{n+N}^{t}, \tag{3}
\end{align*}
$$

where N and M are positive integers, t is the time variable and n means the position, and relation (3) is just the periodic boundary condition. This system is a variant of the periodic discrete Toda equation, which is the $M=1$ case [6].

This paper is a continuation of the paper [3]. We will construct a tau function solution for the hungry periodic discrete Toda equation (hpdToda). The present method is based on the inverse scattering method, which is a common method in the field [1, 2].

Remark. To avoid a non-interesting solution $I_{n}^{t+M}=V_{n}^{t}, V_{n}^{t+1}=I_{n+1}^{t}$, we should assume the extra constraint

$$
\prod_{n=1}^{N} I_{n}^{t+M}=\prod_{n=1}^{N} I_{n}^{t} \neq \prod_{n=1}^{N} V_{n}^{t+1}=\prod_{n=1}^{N} V_{n}^{t},
$$

which is enough to guarantee the existence of a unique solution. See theorem 2.3.

Notation. For a meromorphic function f over a complete curve $C,(f)_{0}\left(\right.$ resp. $\left.(f)_{\infty}\right)$ denotes the divisor of zeros (resp. poles) of $f . \quad$ Let $(f):=(f)_{0}-(f)_{\infty} . \quad \operatorname{Div}^{d}(C)$ means the set of divisors over C of degree d and $\operatorname{Pic}^{d}(C)$ means the quotient set defined by $\operatorname{Pic}^{d}(C)=\operatorname{Div}^{d}(C) /($ linearly equivalent $)$. For an element $\mathcal{D} \in \operatorname{Div}^{d}(C),[\mathcal{D}]$ means the image of \mathcal{D} under the natural map $\operatorname{Div}^{d}(C) \rightarrow \operatorname{Pic}^{d}(C)$.

In sections 2 and 3, we consider the case g.c.d. $(N, M)=1$. We will discuss the general cases in section 4.

2. Linearization of hpdToda

We summarize the results of [3] briefly in this section. The reader should consult the paper for further details.

2.1. The spectral curve and the eigenvector mapping

The hpdToda equation ((1)-(3)) is equivalent to the following matrix equation:

$$
\begin{equation*}
L_{t+1}(y) R_{t+M}(y)=R_{t}(y) L_{t}(y) \tag{4}
\end{equation*}
$$

where $L_{t}(y)$ and $R_{t}(y)$ are given by
$L_{t}(y)=\left(\begin{array}{cccc}1 & & & V_{N}^{t} \cdot 1 / y \\ V_{1}^{t} & 1 & & \\ & \ddots & \ddots & \vdots \\ & & V_{N-1}^{t} & 1\end{array}\right), \quad R_{t}(y)=\left(\begin{array}{cccc}I_{1}^{t} & 1 & & \\ & I_{2}^{t} & \ddots & \\ & & \ddots & 1 \\ y & & & I_{N}^{t}\end{array}\right)$,
and y is a complex variable. Let us introduce a new matrix $X_{t}(y)$ defined by

$$
\begin{equation*}
X_{t}(y):=L_{t}(y) R_{t+M-1}(y) \cdots R_{t+1}(y) R_{t}(y) \tag{5}
\end{equation*}
$$

From (4) and (5), we obtain

$$
\begin{equation*}
X_{t+1}(y) R_{t}(y)=R_{t}(y) X_{t}(y) \tag{6}
\end{equation*}
$$

which implies that the characteristic polynomial of $X_{t}(y)$ is invariant under the time evolution. Let $F(x, y):=\operatorname{det}\left(X_{t}(y)-x E\right)$ be the characteristic polynomial of $X_{t}(y)$ (E is the unit matrix). Denote the affine curve defined by $F(x, y)=0$ by \widetilde{C}, and its completion by C. Of course, C is invariant under the time evolution as well. This projective curve C is called the spectral curve of hpdToda.
2.1.1. Properties of the spectral curve. Now let us list the behaviour of C, following [3] section 2.

- on C, there exists a point $P:(x, y)=(\infty, \infty)$ around which there exists a local coordinate k, such that $x=k^{-M}+\cdots$ and $y=k^{-N}+\cdots$.
- on C, there exists a point $Q:(x, y)=(\infty, 0)$ around which there exists a local coordinate k such that $x=E k^{-1}+\cdots$ and $y=k^{N}+\cdots$, where $E=\left(\prod_{n=1}^{N} \prod_{j=0}^{M-1} I_{n}^{j}\right) \cdot \prod_{n=1}^{N} V_{n}^{0}$.
- the M points $A_{j}:(x, y)=\left(0,(-1)^{N} \prod_{n} I_{n}^{j}\right), j=0,1, \ldots, M-1$, lie on C.
- the point $B:(x, y)=\left(0, \prod_{n} V_{n}^{t}\right)$ lies on C.
- The projection $p_{x}: C \ni(x, y) \mapsto x \in \mathbb{P}^{1}$ is $(M+1): 1$, and the projection $p_{y}: C \ni(x, y) \mapsto y \in \mathbb{P}^{1}$ is $N: 1$.
- C has genus $g=\frac{(N-1)(M+1)-m+1}{2}$, where m is the greatest common divisor of N and M.

Hereafter, we assume that C is smooth unless otherwise stated.
2.1.2. The eigenvector mapping. An isolevel set \mathcal{T}_{C} is the set of matrices $X(y)$ (equation (5)) associated with the spectral curve C. Now we construct a map from \mathcal{T}_{C} to $\operatorname{Pic}^{g+N-1}(C)$, called the eigenvector mapping, which plays a very important role in the present method.

Let $X=X(y)$ be an element of \mathcal{T}_{C}. If $(x, y) \in \widetilde{C}$, there exists a complex N-vector $\boldsymbol{v}(x, y)$ such that $X(y) \boldsymbol{v}(x, y)=x \boldsymbol{v}(x, y)$, up to a constant multiple. Then there exists a Zariski open subset C° of \widetilde{C} over which the morphism $C^{\circ} \ni(x, y) \mapsto \boldsymbol{v}(x, y) \in \mathbb{P}^{N-1}$ is uniquely determined. Moreover, for a smooth C, this morphism can be extended uniquely over the whole C. Denote this morphism by $\Psi_{X}: C \rightarrow \mathbb{P}^{N-1}$.

The eigenvector mapping $\varphi_{C}: \mathcal{T}_{C} \rightarrow \operatorname{Pic}^{d}(C)(d=g+N-1)$ is a map defined by the formula

$$
\varphi_{C}(X)=\Psi_{X}^{*}\left(\mathcal{O}_{\mathbb{P}^{N-1}}(1)\right),
$$

where $\mathcal{O}_{\mathbb{P}^{N-1}}(1)$ is the invertible sheaf of hyperplane sections over \mathbb{P}^{N-1}. Note that it is nontrivial to prove $\varphi_{C}(X) \in \operatorname{Pic}^{d}(C)$ (see [3], section 2).

The role of the eigenvector mapping is to embed the set \mathcal{T}_{C} into $\mathrm{Pic}^{d}(C)$. The following proposition is originally obtained in van Moerbeke, Mumford [4].

Proposition 2.1 ([4], theorem 3). The eigenvector mapping $\varphi_{C}: \mathcal{T}_{C} \rightarrow \operatorname{Pic}^{d}(C)$ is an embedding.

Although the definition of the eigenvector mapping is abstract, we can have an explicit formula to express $\varphi_{C}(X)$ in the present situation.

Lemma 2.2 ([3], section 2). Let $\boldsymbol{v}(x, y)=\left(\begin{array}{c}g_{1} \\ \vdots \\ g_{N}\end{array}\right)$ be an eigenvector of $X(y)$ belonging to x $\left(g_{i}=g_{i}(x, y), i=1, \ldots, N\right)$. Then it follows that $\varphi_{C}(X)=\left[\left(g_{1} / g_{N}\right)_{\infty}\right]$.

On the other hand, the divisor $\left(g_{1} / g_{N}\right)$ has the following expression ([4] proposition 2.1):

$$
\begin{equation*}
\left(g_{1} / g_{N}\right)=\mathcal{D}_{1}+(N-1) P-\mathcal{D}_{2}-(N-1) Q \tag{7}
\end{equation*}
$$

where \mathcal{D}_{1} and \mathcal{D}_{2} are the general and positive divisors of degree g.
Let $\mathfrak{d}(X):=\mathcal{D}_{2}$. Lemma 2.2 is rewritten as $\varphi_{C}(X)=[\mathfrak{d}(X)+(N-1) Q]$.

2.2. Linearization theorem

Consider the $N \times N$ matrix $X_{t}(y)$ defined by (5) and the associated spectral curve C. Let σ and τ be the isomorphisms on \mathcal{T}_{C} defined by
$\sigma\left(X_{t}(y)\right)=S X_{t}(y) S^{-1}, \quad \mu\left(X_{t}(y)\right)=R_{t}(y) X_{t}(y) R_{t}(y)^{-1}=X_{t+1}(y)$,
where

$$
S=\left(\begin{array}{llll}
0 & 1 & & \\
& 0 & \ddots & \\
& & \ddots & 1 \\
y & & & 0
\end{array}\right)
$$

For the hpdToda equation ((1)-(3)), (4), σ is the n-shift operator: $n \mapsto n+1$ and μ is the t-shift operator: $t \mapsto t+1$.

By calculating the divisors $\mathfrak{d}\left(\sigma\left(X_{t}\right)\right)$ and $\mathfrak{d}\left(\mu\left(X_{t}\right)\right)$, we have the following theorem which illustrates the flow of the hpdToda equation on $\operatorname{Pic}^{d}(C)$

Theorem 2.3 ([3]).
(1) Let \mathcal{D} be the divisor $\mathcal{D}=P-Q$. Then the following diagram is commutative:

$$
\begin{array}{rlll}
\mathcal{T}_{C} & \rightarrow & \operatorname{Pic}^{d}(C) \\
\sigma & \downarrow & & \downarrow \quad+[\mathcal{D}] \\
\mathcal{T}_{C} & \rightarrow & \operatorname{Pic}^{d}(C) .
\end{array}
$$

(2) Let $\mathcal{E}_{j}(j=1,2, \ldots, M)$ be the divisor $\mathcal{E}_{j}=P-A_{j}$. If $t \equiv j(\bmod M)$, the following diagram is commutative:

$$
\begin{array}{cccc}
& \mathcal{T}_{C} & \rightarrow & \operatorname{Pic}^{d}(C) \\
\mu & \downarrow & & \downarrow \\
& +\left[\mathcal{E}_{j}\right] \\
& \mathcal{T}_{C} & \rightarrow & \operatorname{Pic}^{d}(C)
\end{array}
$$

Corollary 2.4. The time evolution $t \mapsto t+M$ is expressed as $Z \mapsto Z+[B-Q]$ on $\operatorname{Pic}^{d}(C)$.
Proof. By theorem 2.3 (II), on $\operatorname{Pic}^{d}(C),\{t \mapsto t+M\}$ is expressed by the formula $Z \mapsto Z+\left[M P-A_{0}-A_{1}-\cdots-A_{M-1}\right]$. Then the relation $(x)=-M P-Q+A_{0}+A_{1}+\cdots+$ $A_{M-1}+B \in \operatorname{Div}^{0}(C)$ yields the result.

Corollary 2.5. The divisor \mathcal{D}_{1} in (7) satisfies $\mathcal{D}_{1}=\mathfrak{d}\left(\sigma\left(X_{t}\right)\right)$.
Proof. By (7), $\left[\mathcal{D}_{1}\right]=\left[\mathfrak{d}\left(X_{t}\right)+(N-1) Q-(N-1) P\right]=\left[\mathfrak{d}\left(\sigma^{-N+1}\left(X_{t}\right)\right)\right]=\left[\mathfrak{d}\left(\sigma\left(X_{t}\right)\right)\right]$. Because \mathcal{D}_{1} and $\mathfrak{d}\left(\sigma\left(X_{t}\right)\right)$ are general, positive and of degree g, it follows that $\mathcal{D}_{1}=\mathfrak{d}\left(\sigma\left(X_{t}\right)\right)$.

Corollary 2.6. Let $\boldsymbol{v}(x, y)=\left(\begin{array}{c}g_{1} \\ \vdots \\ g_{N}\end{array}\right)$ be an eigenvector of $X(y)$ which belongs to x. Then
(i) $\left(g_{1} / g_{N}\right)=\mathfrak{d}(\sigma X)+(N-1) P-\mathfrak{d}(X)-(N-1) Q$ and
(ii) $\left(g_{N} / y g_{N-1}\right)=\mathfrak{d}(X)+(N-1) P-\mathfrak{d}\left(\sigma^{-1} X\right)-(N-1) Q$.

Proof. Part (i) follows immediately from (7) and corollary 2.5. Applying (i) to the matrix $\sigma^{-1} X=S^{-1} X S$ and noting that $S \cdot\left(g_{N} y^{-1}, g_{1}, \ldots, g_{N-1}\right)^{T}=\left(g_{1}, g_{2}, \ldots, g_{N}\right)^{T}$, we obtain (ii).

Remark 2.1. The time evolution $t \mapsto t+M$ is given by the map $\nu\left(X_{t}(y)\right):=$ $L_{t}^{-1}(y) X_{t}(y) L_{t}(y)$. In fact, $(5,6)$ proves that $v\left(X_{t}(y)\right)=X_{t+M}(y)$.

3. Tau function solution of the hpdToda equation

In this section, we assume g.c.d. $(N, M)=1$.

3.1. Construction of tau functions

We construct a theta function solution of the hpdToda equation. As in the previous section, $X_{t}=X_{t}(y)$ denotes the square matrix defined by (5).

Let C be the (smooth) spectral curve associated with X_{t}. Fix a symplectic basis $\alpha_{1}, \ldots, \alpha_{g} ; \beta_{1}, \ldots, \beta_{g}$ of C and the normalized holomorphic differentials $\omega_{1}, \ldots, \omega_{g}$ such that $\int_{\alpha_{i}} \omega_{j}=\delta_{i, j}$. The $g \times g$ matrix $\Omega:=\left(\int_{\beta_{i}} \omega_{j}\right)_{i, j}$ is called the period matrix of C. For a fixed point $p_{0} \in C$, the Abel-Jacobi mapping $\boldsymbol{A}: \operatorname{Div}(C) \rightarrow \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$ is the homomorphism defined by
$\sum Y_{i}-\sum Z_{j} \mapsto \sum\left(\int_{p_{0}}^{Y_{i}} \omega_{1}, \ldots, \int_{p_{0}}^{Y_{i}} \omega_{g}\right)-\sum\left(\int_{p_{0}}^{Z_{j}} \omega_{1}, \ldots, \int_{p_{0}}^{Z_{j}} \omega_{g}\right)$.
Let us consider the universal covering $\pi: \mathfrak{U} \rightarrow C$ and fix an inclusion $\iota: C \hookrightarrow \mathfrak{U}$. For simplicity, we slightly abuse the notation ' π ' and ' l ' to express the derived maps $\operatorname{Div}(\mathfrak{U}) \rightarrow \operatorname{Div}(C)$ and $\operatorname{Div}(C) \hookrightarrow \operatorname{Div}(\mathfrak{U})$, respectively. Naturally, there exists a continuous $\operatorname{lift} \widetilde{\boldsymbol{A}}: \operatorname{Div}(\mathfrak{U}) \rightarrow \mathbb{C}^{g}$ such that $\widetilde{\boldsymbol{A}} \circ \iota\left(p_{0}\right)=0$. For the projection $\rho: \mathbb{C}^{g} \rightarrow \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$, it follows that $\rho \circ \widetilde{\boldsymbol{A}}=\boldsymbol{A} \circ \pi$.

For fixed $t \in \mathbb{Z}$, assume that some lifted positive divisor $\mathfrak{D}\left(X_{t}\right) \in \operatorname{Div}^{g}(\mathfrak{U})$ with $\pi\left(\mathfrak{D}\left(X_{t}\right)\right)=\mathfrak{d}\left(X_{t}\right)$ is specified. Then there uniquely exist two positive divisors $\mathfrak{D}\left(\sigma X_{t}\right), \mathfrak{D}\left(\mu X_{t}\right) \in \operatorname{Div}^{g}(\mathfrak{U})$ such that

$$
\begin{array}{ll}
\widetilde{\boldsymbol{A}}\left(\mathfrak{D}\left(\sigma X_{t}\right)\right)=\widetilde{\boldsymbol{A}}\left(\mathfrak{D}\left(X_{t}\right)+\imath P-\imath Q\right), & \pi\left(\mathfrak{D}\left(\sigma X_{t}\right)\right)=\mathfrak{d}\left(\sigma X_{t}\right), \\
\widetilde{\boldsymbol{A}}\left(\mathfrak{D}\left(\mu X_{t}\right)\right)=\widetilde{\boldsymbol{A}}\left(\mathfrak{D}\left(X_{t}\right)+\imath P-\imath A_{j}\right), & \pi\left(\mathfrak{D}\left(\mu X_{t}\right)\right)=\mathfrak{d}\left(\mu X_{t}\right), \tag{10}
\end{array}
$$

where $t \equiv j(\bmod M)$.
Let τ^{t} be a holomorphic function over \mathfrak{U} defined by the formula

$$
\begin{equation*}
\tau^{t}(p)=\theta\left(\widetilde{A}\left\{\mathfrak{D}\left(X_{t}\right)-p-\iota \Delta\right\}\right), \quad p \in \mathfrak{U}, \tag{11}
\end{equation*}
$$

where $\theta(\bullet)=\theta(\bullet ; \Omega)$ is the Riemann theta function and $\Delta \in \operatorname{div}^{g-1}(C)$ is the theta characteristic divisor of C ([5], Chap. II, cor. 3.11). To avoid cumbersome notations, we often omit the letters ' $\widetilde{\boldsymbol{A}}$ ', ' l ' and use a simpler expression $\tau^{t}(p)=\theta\left(\mathfrak{D}\left(X_{t}\right)-p-\Delta\right)$ when there is no confusion possible.

Although defined over $\mathfrak{U}, \tau^{t}(p)$ can also be thought of as a multi-valued holomorphic function over C. By the Riemann vanishing theorem ([5], chapter II, theorem 3.11), the zero divisor of $\tau^{t}(p)$ corresponds to $\mathfrak{d}\left(X_{t}\right)$.

Let $\tau_{+}^{t}(p):=\theta\left(\mathfrak{D}\left(\sigma X_{t}\right)-p-\Delta\right)$. Then, by theorem 2.3, the function

$$
\Psi^{t}(p):=\frac{\tau_{+}^{t}(p) \cdot \tau^{t+1}(p)}{\tau^{t}(p) \cdot \tau_{+}^{t+1}(p)}=\frac{\theta\left(\mathfrak{D}\left(\sigma X_{t}\right)-p-\Delta\right) \cdot \theta\left(\mathfrak{D}\left(\mu X_{t}\right)-p-\Delta\right)}{\theta\left(\mathfrak{D}\left(X_{t}\right)-p-\Delta\right) \cdot \theta\left(\mathfrak{D}\left(\mu \sigma X_{t}\right)-p-\Delta\right)}
$$

satisfies $[$ (the zeros of denominator) $]=[($ the zeros of numerator $)] \in \operatorname{Pic}^{2 g}(C)$ and therefore, it is a single-valued and meromorphic function over C.

Consider an eigenvector

$$
X_{t}(y)\left(\begin{array}{c}
g_{1}^{t} \\
\vdots \\
g_{N}^{t}
\end{array}\right)=x\left(\begin{array}{c}
g_{1}^{t} \\
\vdots \\
g_{N}^{t}
\end{array}\right), \quad\left(g_{i}^{t}=g_{i}^{t}(x, y)=g_{i}^{t}(p)\right)
$$

From the relation $\left(g_{1}^{t} / g_{N}^{t}\right)=\mathfrak{d}\left(\sigma X_{t}\right)+(N-1) P-\mathfrak{d}\left(X_{t}\right)-(N-1) Q$ (corollary 2.6), we derive the following equation by means of Liouville's theorem:

$$
\begin{equation*}
\Psi^{t}(p)=c \times \frac{g_{1}^{t}(p) \cdot g_{N}^{t+1}(p)}{g_{N}^{t}(p) \cdot g_{1}^{t+1}(p)}, \quad c: \text { constant } \tag{12}
\end{equation*}
$$

By virtue of (12), we can calculate some special values of $\Psi^{t}(p)$
Lemma 3.1. If the condition that g.c.d $(N, M)=1$, we have (i) $\Psi^{t}(P)=c$ and (ii) $\Psi^{t}(Q)=c \times \frac{I_{N}^{t}}{I_{1}^{t}}$.

Proof. The lemma is proved by an elementary calculation, which we shall give in the appendix.

Because $\theta(\mathfrak{D}(X)-\iota Q-\Delta)=\theta(\mathfrak{D}(X)+(\iota P-\iota Q)-\iota P-\Delta)=\theta(\mathfrak{D}(\sigma X)-\iota P-\Delta)$, it follows that

$$
\Psi^{t}(Q)=\Psi_{+}^{t}(P), \quad \text { where } \quad \Psi_{+}^{t}(p)=\frac{\tau_{++}^{t}(p) \cdot \tau_{+}^{t+1}(p)}{\tau_{+}^{t}(p) \cdot \tau_{++}^{t+1}(p)}
$$

Then lemma 3.1 implies $I_{1}^{t} \Psi_{+}^{t}(P)=I_{N}^{t} \Psi^{t}(P)$.
Repeating this argument for $\Psi_{+}(p)$, we also derive $I_{2}^{t} \Psi_{++}^{t}(P)=I_{1}^{t} \Psi_{+}^{t}(P)$, and inductively we have that

$$
I_{N}^{t} \Psi^{t}(P)=I_{1}^{t} \Psi_{+}^{t}(P)=I_{2}^{t} \Psi_{++}^{t}(P)=I_{3}^{t} \Psi_{+++}^{t}(P)=\cdots
$$

Let $\Psi_{n}^{t}:=\Psi_{++\ldots+}^{t}(P)\left(n^{‘}+\right.$'s). Finally we obtain the equations $\Psi_{n+N}^{t}=\Psi_{n}^{t}$ and $I_{n}^{t} \Psi_{n}^{t}=d$, where the number d does not depend on n.

Next, consider the following single-valued meromorphic function over C :
$\Phi^{t}(p):=\frac{\tau^{t}(p) \cdot \tau^{t+M}(p)}{\tau_{+}^{t}(p) \cdot \tau_{-}^{t+M}(p)}=\frac{\theta\left(\mathfrak{D}\left(X_{t}\right)-p-\Delta\right) \cdot \theta\left(\mathfrak{D}\left(\nu X_{t}\right)-p-\Delta\right)}{\theta\left(\mathfrak{D}\left(\sigma X_{t}\right)-p-\Delta\right) \cdot \theta\left(\mathfrak{D}\left(\nu \sigma^{-1} X_{t}\right)-p-\Delta\right)}$.
Using corollary 2.6 and Liouville's theorem, we derive the following expression:

$$
\begin{equation*}
\Phi^{t}(p)=c^{\prime} \times \frac{g_{N}^{t}(p) \cdot g_{N}^{t+M}(p)}{g_{1}^{t}(p) \cdot g_{N-1}^{t+M}(p) \cdot y}, \quad c^{\prime}: \text { constant } \tag{13}
\end{equation*}
$$

which again allows us to compute some special values of $\Phi^{t}(p)$.
Lemma 3.2. On condition that g.c.d $(N, M)=1$, we have (i) $\Phi^{t}(P)=c^{\prime}$ and (ii) $\Phi^{t}(Q)=c^{\prime} \times \frac{V_{N-1}^{t}}{V_{N}^{t}}$.

Proof. See appendix A.
Due to $\Phi^{t}(Q)=\Phi_{+}^{t}(P)$ and lemma 3.2, we have $V_{N}^{t} \Phi_{+}^{t}(P)=V_{N-1}^{t} \Phi^{t}(P)$, which implies

$$
V_{N-1}^{t} \Phi^{t}(P)=V_{N}^{t} \Phi_{+}^{t}(P)=V_{1}^{t} \Phi_{++}^{t}(P)=V_{2}^{t} \Phi_{+++}^{t}(P)=\cdots
$$

Let $\Phi_{n-1}^{t}:=\Phi_{++\cdots+}^{t}(P)\left(n^{\prime}+\right.$'s). Therefore, we obtain $\Phi_{n+N}^{t}=\Phi_{n}^{t}$ and $V_{n}^{t} \Phi_{n}^{t}=d^{\prime}$, where the number d^{\prime} does not depend on n.

Define $\tau_{-1}^{t}:=\tau^{t}(\iota P), \tau_{0}^{t}:=\tau_{+}^{t}(\iota P), \tau_{1}^{t}:=\tau_{++}^{t}(\iota P), \ldots, \tau_{n-1}^{t}:=\tau_{++\ldots+}^{t}(\iota P)\left(n^{‘}+’ s\right)$. By the arguments above, I_{n}^{t} and V_{n}^{t} have the following expressions:

$$
\begin{equation*}
I_{n}^{t}=d \times \frac{\tau_{n-1}^{t} \cdot \tau_{n}^{t+1}}{\tau_{n}^{t} \cdot \tau_{n-1}^{t+1}}, \quad V_{n}^{t}=d^{\prime} \times \frac{\tau_{n+1}^{t} \cdot \tau_{n-1}^{t+M}}{\tau_{n}^{t} \cdot \tau_{n}^{t+M}} \tag{14}
\end{equation*}
$$

3.2. Solution of hpdToda

For the g-dimensional vectors \boldsymbol{a} and $\boldsymbol{b},\langle\boldsymbol{a}, \boldsymbol{b}\rangle$ denotes $\boldsymbol{a}^{T} \boldsymbol{b} \in \mathbb{C}$.
By periodicity $\mathfrak{d}\left(\sigma^{N} X_{t}\right)=\mathfrak{d}\left(X_{t}\right)$, there exist integer vectors $\boldsymbol{n}, \boldsymbol{m} \in \mathbb{Z}^{g}$ such that $\widetilde{\boldsymbol{A}}(N(\iota P-\iota Q))=\boldsymbol{n}+\Omega \boldsymbol{m}$. Considering the definition of the Riemann theta function (for example, see [5], section II.1), we have

$$
\tau_{n+N}^{t}=\tau_{n}^{t} \times \exp (-2 \pi \mathrm{i} \cdot\langle\boldsymbol{m}, \boldsymbol{z}\rangle-\pi \mathrm{i} \cdot\langle\boldsymbol{m}, \Omega \boldsymbol{m}\rangle), \quad \mathrm{i}=\sqrt{-1}
$$

where $\boldsymbol{z}=\widetilde{\boldsymbol{A}}\left(\mathfrak{D}\left(\sigma^{n+1} X_{t}\right)-\iota P-\Delta\right)$. By (14), we have

$$
\begin{align*}
I_{1}^{t} I_{2}^{t} \cdots I_{N}^{t} & =d^{N} \times \frac{\tau_{1}^{t} \cdot \tau_{N+1}^{t+1}}{\tau_{N+1}^{t} \cdot \tau_{1}^{t+1}}=d^{N} \times \exp \left(-2 \pi \mathrm{i} \cdot\left\langle\boldsymbol{m}, \widetilde{\boldsymbol{A}}\left(\iota P-\iota A_{j}\right)\right\rangle\right) \tag{15}\\
V_{1}^{t} V_{2}^{t} \cdots V_{N}^{t} & =d^{N} \times \frac{\tau_{N+1}^{t} \cdot \tau_{0}^{t+M}}{\tau_{1}^{t} \cdot \tau_{N}^{t+M}} \\
& =d^{N} \times \exp \left(-2 \mathrm{i} \pi \cdot\left\langle\boldsymbol{m}, \widetilde{\boldsymbol{A}}\left(\iota A_{0}+\cdots+\iota A_{M-1}-(M-1) \iota P-\iota Q\right)\right\rangle\right), \tag{16}
\end{align*}
$$

where $j \equiv t(\bmod M)$. Recall $\prod_{n} I_{n}^{t+M}=\prod_{n} I_{n}^{t}$ and $\prod_{n} V_{n}^{t+1}=\prod_{n} V_{n}^{t}$, which imply that d depends on $t(\bmod M)$ and that d^{\prime} is independent of t. Finally, we obtain the conclusion.

Theorem 3.3. If g.c.d. $(N, M)=1$, (14)-(16) solve the hpdToda (1)-(3).

4. The general cases

In the previous sections, we have assumed that g.c.d. $(N, M)=1$. Unfortunately, the method presented in this paper cannot be applied to the general cases.

For example, when $N=M=2$, the characteristic polynomial of the matrix $X_{t}(y)$ (equation (5)) is

$$
\operatorname{det}\left(X_{t}(y)-x E\right)=y^{2}-y\left(2 x+U_{1}\right)+x^{2}-U_{2} x+U_{3}-U_{4} y^{-1}
$$

where $U_{1}=I_{1}^{t} I_{2}^{t}+I_{1}^{t+1} I_{2}^{t+1}+V_{1}^{t} V_{2}^{t}, U_{2}=I_{1}^{t} I_{1}^{t+1}+I_{2}^{t} I_{2}^{t+1}+I_{1}^{t} V_{2}^{t}+I_{1}^{t+1} V_{1}^{t}+I_{2}^{t} V_{1}^{t}+I_{2}^{t+1} V_{2}^{t}$, $U_{3}=I_{1}^{t} I_{2}^{t} I_{1}^{t+1} I_{2}^{t+1}+I_{1}^{t+1} I_{2}^{t+1} V_{1}^{t} V_{2}^{t}+V_{1}^{t} V_{2}^{t} I_{1}^{t} I_{2}^{t}, U_{4}=I_{1}^{t} I_{2}^{t} I_{1}^{t+1} I_{2}^{t+1} V_{1}^{t} V_{2}^{t}$. However, the hungry Toda system (1)-(3) has the extra conserved quantity $I_{1}^{t}+I_{2}^{t}+I_{1}^{t+1}+I_{2}^{t+1}+V_{1}^{t}+V_{2}^{t}$, which is independent of U_{1}, U_{2}, U_{3} and U_{4}. This means that the spectral curve does not faithfully reflect the data of the system.

For this reason, we should try to trace the problem to the case g.c.d. $(N, M)=1$. Denote by $\mathrm{Toda}_{N, M}$ the hungry Toda system (1)-(3) associated with the positive integers N and M. It is sufficient to prove the following statement.

Proposition 4.1. Define the initial values $I_{n}^{0}:=\zeta+o(\zeta)(\zeta \rightarrow \infty, \forall n)$ for some complex parameter ζ, and let $\left\{I_{n}^{t}, V_{n}^{t}\right\}_{n, t}$ be a solution of $\operatorname{Toda}_{N, M}$. When $\zeta \rightarrow \infty$, the new sequence

$$
\left\{I_{n}^{k M+1}, I_{n}^{k M+2}, \ldots, I_{n}^{k M+M-1}, V_{n}^{k M+1}, V_{n}^{k M+2}, \ldots, V_{n}^{k M+M-1}\right\}_{n, k}
$$

is a solution of $\operatorname{Toda}_{N, M-1}$.
Proof. We shall prove the following:

$$
\begin{align*}
& I_{n}^{k M+M-1}=I_{n}^{k M-1}+V_{n}^{k M-1}-V_{n-1}^{k M+1}+o(1), \tag{17}\\
& V_{n}^{k M+1}=\frac{I_{n+1}^{k M-1} V_{n}^{k M-1}}{I_{n}^{k M+M-1}} \cdot(1+o(1)) \tag{18}
\end{align*}
$$

By (1)-(3) and remark given in the introduction, we have

$$
I_{n}^{t}=\zeta+o(\zeta)(\forall n) \quad \Rightarrow \quad\left\{\begin{array}{l}
I_{n}^{t+M}=\zeta+o(\zeta)(\forall n) \\
V_{n}^{t+1}=V_{n}^{t}+o(1)(\forall n)
\end{array} \quad(\zeta \rightarrow \infty)\right.
$$

Then, in our situation, it follows that $V_{n}^{k M+1}=V_{n}^{k M}+o(1)$ for all $k \in \mathbb{Z}_{\geqslant 0}$ and n. Using (1)-(3) again, we derive equations (17) and (18).

Applying proposition 4.1 repeatedly, we can trace the problem to the case g.c.d. $(N, M)=1$.

Example. The hungry Toda system with $N=M=2$ can be traced to the case $N=2, M=3$. Let

$$
\begin{aligned}
L_{0} & :=\left(\begin{array}{cc}
1 & V_{2}^{0} y^{-1} \\
V_{1}^{0} & 1
\end{array}\right), & R_{0} & :=\left(\begin{array}{cc}
\zeta & 1 \\
y & \zeta
\end{array}\right), \\
R_{1} & :=\left(\begin{array}{cc}
I_{1}^{0} & 1 \\
y & I_{2}^{0}
\end{array}\right), & R_{2} & :=\left(\begin{array}{cc}
I_{1}^{1} & 1 \\
y & I_{2}^{1}
\end{array}\right) .
\end{aligned}
$$

Define $X_{0}:=L_{0} R_{2} R_{1} R_{0}$. The characteristic polynomial of X_{0} is

$$
\begin{aligned}
\operatorname{det}\left(X_{0}-x E\right) & =-y^{3}+y^{2}\left(\zeta^{2}+U_{1}\right)-y\left\{\left(2 \zeta+U_{5}\right) x+U_{1} \zeta^{2}+U_{3}\right\} \\
& +x^{2}-\left(U_{2} \zeta+U_{6}\right) x+U_{3} \zeta^{2}+U_{4}-U_{4} \zeta^{2} y^{-1}
\end{aligned}
$$

where $U_{5}=I_{1}^{0}+I_{2}^{0}+I_{1}^{1}+I_{2}^{1}+V_{1}^{0}+V_{2}^{0}$ and $U_{6}=I_{1}^{0} I_{1}^{1} V_{1}^{0}+I_{2}^{0} I_{2}^{1} V_{2}^{0}$. Note that U_{5} is the hidden conserved quantity of $\operatorname{Toda}_{2,2}$. Let $\left\{I_{n}^{t}, V_{n}^{t}\right\}_{n, t}$ be the solution of $\operatorname{Toda}_{2,3}$. Then the sequence

$$
\begin{aligned}
& \lim _{\zeta \rightarrow \infty} I_{n}^{0}, \lim _{\zeta \rightarrow \infty} I_{n}^{1}, \lim _{\zeta \rightarrow \infty} I_{n}^{3}, \lim _{\zeta \rightarrow \infty} I_{n}^{4}, \lim _{\zeta \rightarrow \infty} I_{n}^{6}, \ldots ; \\
& \lim _{\zeta \rightarrow \infty} V_{n}^{0}, \lim _{\zeta \rightarrow \infty} V_{n}^{1}, \lim _{\zeta \rightarrow \infty} V_{n}^{3}, \lim _{\zeta \rightarrow \infty} V_{n}^{4}, \lim _{\zeta \rightarrow \infty} V_{n}^{6}, \ldots
\end{aligned}
$$

solves $\operatorname{Toda}_{2,2}$.

Acknowledgments

The author is very grateful to Professor Tetsuji Tokihiro and Professor Ralph Willox for helpful comments on this paper. This work was supported by KAKENHI 09J07090.

Appendix. Proofs of lemmas

Let $\Psi^{t}(p)$ and $\Phi^{t}(p)$ be the meromorphic functions defined in section 3. We shall now prove lemmas 3.1 and 3.2. Here, we assume g.c.d. $(N, M)=1$.

Denote the set of $N \times N$ matrices by $M_{N}(\mathbb{C})$ and the subset of diagonal matrices by $\Gamma \subset$ $M_{N}(\mathbb{C})$. For a matrix $X \in M_{N}(\mathbb{C})$ and subsets $A, B \subset M_{N}(\mathbb{C})$, let $A+X:=\{a+X \mid a \in A\}$, $A X:=\{a X \mid a \in A\}, A+B:=\{a+b \mid a \in A, b \in B\}$ and $A B:=\{a b \mid a \in A, b \in B\}$.

For two meromorphic functions f, g over C and a point $p \in C$, ' $f \sim g$ around p ' means $0<\lim _{z \rightarrow p}|f(z) / g(z)|<+\infty$.

Let $\left(g_{1}, g_{2}, \ldots, g_{N}\right)^{T}$ be an eigenvector of $X=X(y) \in \mathcal{T}_{C}$ belonging to an eigenvalue x. Then g_{1}, \ldots, g_{N} are meromorphic functions over C. The following lemma is fundamental.

Lemma A.1.

(i) Let k be a local coordinate around P. Then $g_{1} / g_{N}=k^{N-1}+\cdots, g_{2} / g_{N}=k^{N-2}+\cdots$, $\ldots, g_{N-1} / g_{N}=k+\cdots$.
(ii) Let k be a local coordinate around Q. Then $g_{1} / g_{N} \sim k^{-N+1}, g_{2} / g_{N} \sim k^{-N+2}, \ldots$, $g_{N-1} / g_{N} \sim k^{-1}$.
Proof. (i) Recall that we have $x=k^{-M}+\cdots$ and $y=k^{-N}+\cdots$ around P. By (5), X_{t} is contained in the subset $\left(E+\Gamma S^{-1}\right)(\Gamma+S)^{M}=\Gamma S^{-1}+\Gamma+\Gamma S+\cdots+\Gamma S^{M-1}+S^{M}$. Then the equation $X_{t}(y) \boldsymbol{v}=x \boldsymbol{v}$ implies
$\left(\gamma_{-1} S^{-1}+\gamma_{0}+\gamma_{1} S+\cdots+\gamma_{M-1} S^{M-1}+S^{M}\right) \cdot \boldsymbol{v}=k^{-M} \boldsymbol{v}+$ (higher terms),
where $\gamma_{i}(i=-1,0, \ldots, M-1)$ are diagonal matrices. Let $T:=k S$. Therefore, we obtain $\left(T^{M}+\sum_{i=-1}^{M-1} k^{M-i} \gamma_{i} T^{i}\right) \cdot \boldsymbol{v}=\boldsymbol{v}+$ (higher). Because N and M are relatively prime, the solution of $T \boldsymbol{v}=\boldsymbol{v}$ is $\boldsymbol{v}=\left(k^{N-1}, k^{N-2}, \ldots, 1\right)^{T}$ up to a constant multiple. This fact leads to the desired result.
(ii) Let k be a local coordinate around Q such that $x=E k^{-1}+\cdots$ and $y=k^{M}+\cdots$ (section 2). It follows that

$$
\left(\gamma_{-1} S^{-1}+\gamma_{0}+\gamma_{1} S+\cdots+\gamma_{M-1} S^{M-1}+S^{M}\right) \cdot \boldsymbol{v}=E k^{-1} v+(\text { higher }) .
$$

Let $U:=k^{-1} S$. Then we have $\left(\gamma_{-1} U^{-1}+\sum_{i=0}^{M} k^{i+1} \gamma_{i} U^{i}\right) \cdot \boldsymbol{v}=E \boldsymbol{v}+$ (higher). Standard results from linear algebra prove that there exist $(N-1)$ complex numbers c_{1}, \ldots, c_{N-1} such that

$$
U \cdot\left(c_{1} k^{-N+1}, c_{2} k^{-N+2}, \ldots, 1\right)^{T}=E \cdot\left(c_{1} k^{-N+1}, c_{2} k^{-N+2}, \ldots, 1\right)^{T}
$$

which leads to the desired result.

Proof of lemma 3.1

The equation $X_{t+1}(y) R_{t}(y)=R_{t}(y) X_{t}(y)$ (4) implies $\left(g_{1}^{t+1}, g_{2}^{t+1}, \ldots, g_{N}^{t+1}\right)=R_{t}(y) \cdot$ $\left(g_{1}^{t}, g_{2}^{t} \ldots, g_{N}^{t}\right)$. Then (12) gives rise to

$$
\Psi^{t}(p)=c \times \frac{g_{1}^{t}}{g_{N}^{t}} \cdot \frac{I_{N}^{t} g_{N}^{t}+g_{1}^{t} y}{I_{1}^{t} g_{1}^{t}+g_{2}^{t}}
$$

By lemma appendix A.1, Ψ^{t} satisfies $\Psi^{t}=c+\cdots$, around P, and $\Psi^{t}=c \cdot\left(I_{N}^{t} / I_{1}^{t}\right)+\cdots$, around Q.

Proof of lemma 3.2

As mentioned in remark 2.1, one has that $L_{t}(y) X_{t+M}(y)=X_{t}(y) L_{t}(y)$, which implies $\left(g_{1}^{t}, g_{2}^{t} \ldots, g_{N}^{t}\right)=L_{t}(y) \cdot\left(g_{1}^{t+M}, g_{2}^{t+M} \ldots, g_{N}^{t+M}\right)$. Then (13) leads

$$
\Phi^{t}(p)=c^{\prime} \times \frac{V_{N-1}^{t} g_{N-1}^{t+M}+g_{N}^{t+M}}{V_{N}^{t} g_{N}^{t+M} y^{-1}+g_{1}^{t+M}} \cdot \frac{g_{N}^{t+M}}{g_{N-1}^{t+M} \cdot y}
$$

By lemma appendix A.1, Φ^{t} satisfies $\Phi^{t}=c^{\prime}+\cdots$, around P, and $\Phi^{t}=c^{\prime} \cdot\left(V_{N-1}^{t} / V_{N}^{t}\right)+\cdots$, around Q.

References

[1] Babelon O, Bernard D and Talon M 2003 Introduction to Classical Integrable Systems (Cambridge: Cambridge University Press) pp 178-205
[2] Dubrovin B A, Krichever I M and Novikov S P 1990 Dynamical Systems IV (Encyclopedia of Mathematical Sciences vol 4) ed V I Arnold and S P Novikov (Berlin: Springer) pp 173-281
[3] Iwao S 2008 J. Phys. A: Math. Theor. 41115201
[4] van Moerbeke P and Mumford D 1979 Acta Math. 143 93-154
[5] Mumford D, Musili C, Nori M, Previato E and Stillman M 1983 Tata Lectures on Theta I (Progress in Mathematics vol 28) ed H Bass, J Oesterlé and A Weinstein (Berlin: Birkhäuser)
[6] Tokihiro T, Nagai A and Satsuma J 1999 Inverse Problems 15 1639-62

